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Classification

 Qualitative variables take values in an unordered set 𝐶, such as:

 Eye color ∈ {brown, blue, green}

 Email ∈ {spam, ham}

 Given a feature vector 𝑋 and a qualitative response 𝑌 taking values in the set 𝐶 , 

the classification task is to build a function 𝐶(𝑋) that takes as input the feature 

vector 𝑋 and predicts its value for 𝑌; i.e. 𝐶(𝑋) ∈ 𝐶

 Often we are more interested in estimating the probabilities that 𝑋 belongs to 

each category in 𝐶
 For example, it is more valuable to have an estimate of the probability that an insurance 

claim is fraudulent, than a classification fraudulent or not
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Example Dataset: Credit Card Default

 𝑛 = 10,000, 𝑝 = 4 and the default rate is 3.3%
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https://islp.readthedocs.io/en/latest/datasets/Default.html


Can we use Linear Regression?

 Suppose we have a response variable with three possible values. We must 

classify patients according to their symptoms. We can have the code

𝑌 = ቐ
1 if stroke;
2 if drug overdose;
3 if epileptic seizure.

 This coding suggests an ordering, and in fact implies that the difference

between stroke and drug overdose is the same as between drug overdose and 

epileptic seizure
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Can we use Linear Regression?

 For the binary response in the Default classification task that we code

𝑌 = ቊ
1 if Yes
0 if No

 Can we perform a linear regression of 𝑌 on 𝑋 and classify as Yes if ෠𝑌 > 0.5?

 In the binary case it is not hard to show that even if we flip the above coding, linear 

regression will produce the same final predictions

 In this case of a binary outcome, linear regression does a good job as a classifier, and is 

related to linear discriminant analysis which we discuss later (ESL exercise 4.2)
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https://stats.stackexchange.com/questions/31459/what-is-the-relationship-between-regression-and-linear-discriminant-analysis-ld


Can we use Linear Regression?

 The orange marks indicate the response 𝑌, either 0 or 1. Linear regression does 

not estimate Pr(Y = 1|X) well. Linear regression might produce probabilities 

less than zero or bigger than one

 Logistic regression seems well suited!
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1. Logistic Regression

 Let’s write 𝑝(𝑋) = 𝑃𝑟(𝑌 = 1|𝑋) for short and consider using balance to 

predict default. Logistic regression uses the form

𝐸(𝑌|𝑋) = 𝑝(𝑋) =
𝑒𝛽0+𝛽1𝑋

1 + 𝑒𝛽0+𝛽1𝑋

𝑌|𝑋= Bernoulli(𝑝(𝑋))

(e ≈ 2.71828 is a mathematical constant [Euler’s number])

 No matter what values 𝛽0, 𝛽1 or 𝑋 take, 𝑝(𝑋) will have values between 0 and 1

 A bit of rearrangement gives

log(
𝑝(𝑋)

1 − 𝑝(𝑋)
) = 𝛽0 + 𝛽1𝑋

 This monotone transformation is called the log odds or logit transformation of 𝑝(𝑋)

 Note that the decision boundary is still linear

7

https://stats.stackexchange.com/questions/93569/why-is-logistic-regression-a-linear-classifier


Estimating the Regression Coefficients - Maximum Likelihood

 We use maximum likelihood to estimate the parameters

𝑙 𝛽0, 𝛽1 = ෑ

𝑖:𝑦𝑖=1

𝑝(𝑥𝑖) ෑ

𝑖:𝑦𝑖=0

1 − 𝑝(𝑥𝑖)

 This likelihood gives the probability of the observed zeros and ones in the data. 

We pick 𝛽0 and 𝛽1 to maximize the likelihood of the observed data

 Most statistical packages can fit linear logistic regression models by maximum 

likelihood (𝑧-statistics or 𝑡-statistics?)
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https://dafriedman97.github.io/mlbook/content/c3/s1/logistic_regression.html#parameter-estimation
https://stats.stackexchange.com/questions/60074/wald-test-for-logistic-regression


Making Predictions

 What is our estimated probability of default for someone with a balance of 

$1000?

෠𝑃 𝑋 =
𝑒
෡𝛽0+෡𝛽1𝑋

1 + 𝑒෡𝛽0+෡𝛽1𝑋
=

𝑒−10.6513+0.0055×1000

1 + 𝑒−10.6513+0.0055×1000
= 0.006

 With a balance of $2000?

෠𝑃 𝑋 =
𝑒
෡𝛽0+෡𝛽1𝑋

1 + 𝑒෡𝛽0+෡𝛽1𝑋
=

𝑒−10.6513+0.0055×2000

1 + 𝑒−10.6513+0.0055×2000
= 0.586
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Making Predictions

 Lets do it again, using student as the predictor

෢𝑃𝑟 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑌𝑒𝑠|𝑠𝑡𝑢𝑑𝑒𝑛𝑡 = 𝑌𝑒𝑠 =
𝑒−3.5041+0.4049×1

1 + 𝑒−3.5041+0.4049×1
= 0.0431

෢𝑃𝑟 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑌𝑒𝑠|𝑠𝑡𝑢𝑑𝑒𝑛𝑡 = 𝑁𝑜 =
𝑒−3.5041+0.4049×0

1 + 𝑒−3.5041+0.4049×0
= 0.0292
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Logistic regression with several variables

𝑝(𝑋) =
𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝

1 + 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝

log(
𝑝(𝑋)

1 − 𝑝(𝑋)
) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝

Why is coefficient for student negative, while it was positive before?  
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Confounding

 If we have the information about balance and income, then for each level of 

balance, students default less in multiple logistic regression

 Students tend to have higher balances than non-students, so their marginal default rate is 

higher than for non-students!

 Multiple logistic regression can tease this out
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https://www.causeweb.org/ca

use/resources/fun/cartoons/ice

-cream-sales-and-shark-

sightings

https://www.causeweb.org/cause/resources/fun/cartoons/ice-cream-sales-and-shark-sightings


Multinomial logistic regression - with more than two classes

 So far we have discussed logistic regression with two classes. It is easily 

generalized to more than two classes:

𝑌|𝑋= Categorical (𝑝(𝑋))

𝑃𝑟(𝑌 = 𝑘|𝑋) =
𝑒𝛽𝑘0+𝛽𝑘1𝑋1+𝛽𝑘2𝑋2+⋯+𝛽𝑘𝑝𝑋𝑝

σ𝑙=1
𝐾 𝑒𝛽𝑙0+𝛽𝑙1𝑋1+𝛽𝑙2𝑋2+⋯+𝛽𝑙𝑝𝑋𝑝

log
Pr 𝑌 = 𝑘 𝑋 = 𝑥

Pr 𝑌 = 𝑘′ 𝑋 = 𝑥
= (𝛽𝑘0−𝛽𝑘′0) + (𝛽𝑘1−𝛽𝑘′1)𝑋1 +⋯+ (𝛽𝑘𝑝−𝛽𝑘′𝑝)𝑋𝑝

 This is similar to the softmax activation function used in the neural network 

model

 Here, we actually estimate coefficients for all 𝐾 classes

 Multinomial logistic regression is also referred to as multiclass logistic regression 
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https://dafriedman97.github.io/mlbook/content/c3/s1/logistic_regression.html#multiclass-logistic-regression


2. Why use the other approaches?

1. When the classes are well-separated, the parameter estimates for the logistic 

regression model are surprisingly unstable. Linear discriminant analysis does 

not suffer from this problem

2. If 𝑛 is small and the distribution of the predictors 𝑋 is approximately normal 

in each of the classes, the linear discriminant model is again more stable than 

the logistic regression model

3. Linear discriminant analysis is popular when we have more than two 

response classes and it also provides low-dimensional views of the data
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https://stats.stackexchange.com/questions/254124/why-does-logistic-regression-become-unstable-when-classes-are-well-separated


Generative Models for Classification

 Model the distribution of 𝑋 in each of the classes separately, and then use 

Bayes theorem to flip things around and obtain Pr(𝑌 |𝑋)
 When we use normal (Gaussian) distributions for each class, this leads to linear or 

quadratic discriminant analysis. Other distributions can be used as well!
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https://www.analyticsvidhya.com/blog/2021/07/deep-understanding-of-discriminative-and-generative-models-in-

machine-learning/

https://www.analyticsvidhya.com/blog/2021/07/deep-understanding-of-discriminative-and-generative-models-in-machine-learning/


Bayes theorem for classification

 According to the Bayes’ theorem:

Pr 𝑌 = 𝑘 𝑋 = 𝑥 =
Pr(𝑌 = 𝑘)× Pr 𝑋 = 𝑥 𝑌 = 𝑘

Pr(𝑋 = 𝑥)

One writes this for discriminant analysis:

𝑝𝑘 𝑥 = Pr 𝑌 = 𝑘 𝑋 = 𝑥 =
𝜋𝑘𝑓𝑘(𝑥)

σ𝑙=1
𝐾 𝜋𝑙𝑓𝑙(𝑥)

 𝑓𝑘(𝑥) = 𝑃𝑟 𝑋 = 𝑥 𝑌 = 𝑘 is the density for 𝑋 in class 𝑘. Here we will use normal 

densities for these, separately in each class

 𝜋𝑘 = 𝑃𝑟(𝑌 = 𝑘) is the marginal or prior probability for class 𝑘

 We discuss three classifiers that use different estimates of 𝑓𝑘(𝑥) to approximate 

the Bayes classifier: linear discriminant analysis, quadratic discriminant 

analysis, and naive Bayes
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Classify to the highest density

 We classify a new point according to which density is highest

 When the priors are different, we take them into account as well, and compare 𝜋𝐾𝑓𝑘(𝑥). 
On the right, we favor the pink class — the decision boundary has shifted to the left

 𝑃𝑟 𝑌 = 𝑘 𝑋 = 𝑥 is the posterior probability
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Linear Discriminant Analysis when 𝑝 = 1

 The Gaussian density has the form

𝑓𝑘 𝑥 =
1

2𝜋𝜎𝑘
𝑒
−1
2 (

𝑥−𝜇𝑘
𝜎𝑘

)2

 Here 𝜇𝑘 is the mean, and 𝜎𝑘
2 the variance (in class 𝑘). We will assume that all the 𝜎𝑘 = 𝜎

are the same

 Plugging this into Bayes’ formula, we get a rather complex expression for 

𝑝𝑘(𝑥) = 𝑃𝑟(𝑌 = 𝑘|𝑋 = 𝑥):

𝑝𝑘(𝑥) =

𝜋𝑘
1

2𝜋𝜎
𝑒
−1
2 (

𝑥−𝜇𝑘
𝜎 )2

σ𝑙=1
𝐾 𝜋𝑙

1

2𝜋𝜎
𝑒
−1
2 (

𝑥−𝜇𝑙
𝜎 )2
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Estimating the parameters – Maximum likelihood

ො𝜋𝑘 =
𝑛𝑘
𝑛

ො𝜇𝑘 =
1

𝑛𝑘
෍

𝑖:𝑦𝑖=𝑘

𝑥𝑖

ො𝜎2 =
1

𝑛 − 𝐾
෍

𝑘=1

𝐾

෍

𝑖:𝑦𝑖=𝑘

(𝑥𝑖−ො𝜇𝑘)
2 = ෍

𝑘=1

𝐾
𝑛𝑘 − 1

𝑛 − 𝐾
ො𝜎𝑘
2

 Where ො𝜎𝑘
2 =

1

𝑛𝑘−1
σ𝑖:𝑦𝑖=𝑘

(𝑥𝑖−ො𝜇𝑘)
2 is the usual formula for the estimated variance in the 

𝑘th class and 𝑛𝑘 is the training sample in the 𝑘th class 

 We normalize by the scalar 𝑛 − 𝐾. When we fit a maximum likelihood estimator it should 

be divided by 𝑛, but if it is divided by 𝑛 − 𝐾, we get an unbiased estimator
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https://dafriedman97.github.io/mlbook/content/c4/concept.html


Discriminant functions

 To classify at the value 𝑋 = 𝑥, we need to see which of the 𝑝𝑘(𝑥) is largest. 

Taking logs of 𝑝𝑘(𝑥), and discarding terms that do not depend on 𝑘, this is 

equivalent to assigning 𝑥 to the class with the largest discriminant score:

𝛿𝑘 𝑥 = 𝑥 ∙
𝜇𝑘

𝜎2
−

𝜇𝑘
2

2𝜎2
+ log(𝜋𝑘) (Exercise 4.2)

 The above is called the discriminant function and note that 𝛿𝑘 𝑥 is a linear function of 𝑥
and when 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑝𝑘 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝛿𝑘 𝑥 it results in linear decision boundary

 If there are 𝐾 = 2 classes and 𝜋1 = 𝜋2 = 0.5, then one can see that the decision boundary 

is at

𝑥 =
𝜇1 + 𝜇2

2
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Discriminant functions – simulation data

 Example with 𝜇1 = −1.25, 𝜇2 = 1.25, 𝜋1 = 𝜋2 = 0.5, and 𝜎2 = 1.

 Typically we don’t know these parameters; we just have the training data. In 

that case we simply estimate the parameters and plug them into the rule

መ𝛿𝑘 𝑥 = 𝑥 ∙
ො𝜇𝑘
ො𝜎2

−
ො𝜇𝑘
2

2 ො𝜎2
+ log( ො𝜋𝑘)
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Linear Discriminant Analysis when 𝑝 > 1

 Density:𝑓𝑘 𝑥 =
1

(2𝜋)
𝑝
2|Σ|

1
2

𝑒
−1

2
(𝑥−𝜇𝑘)

𝑇Σ−1(𝑥−𝜇𝑘)

 Discriminant function: 𝛿𝑘 𝑥 = 𝑥𝑇Σ−1𝜇𝑘 −
1

2
𝜇𝑘
𝑇Σ−1𝜇𝑘 + log(𝜋𝑘)

=
−1

2
𝑥 − 𝜇𝑘

𝑇Σ−1 𝑥 − 𝜇𝑘 + log(𝜋𝑘) + 𝐶

 Despite its complicated form

𝛿𝑘 𝑥 = 𝑐𝑘0 + 𝑐𝑘1𝑥1 + 𝑐𝑘2𝑥2 +⋯+ 𝑐𝑘𝑝𝑥𝑝 is a linear function

The decision boundary 𝑥: 𝛿𝑘 𝑥 = 𝛿𝑙 𝑥 , 1 ≤ 𝑘, 𝑙 ≤ 𝐾 is also a linear function
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Assuming the same covariance matrix

Mahalanobis distance between 𝑥 and 𝜇𝑘

https://arxiv.org/pdf/1906.02590.pdf
https://stats.stackexchange.com/questions/140056/decomposition-of-inverse-covariance-matrix


Illustration: 𝑝 = 2 and 𝐾 = 3 classes

 Here, 𝜋1 = 𝜋2 = 𝜋3 = 1/3

 The dashed lines are known as the Bayes decision boundaries and the solid line 

is obtained using LDA
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Alternative view of LDA (link with Fisher LDA)

 LDA can be used to perform supervised dimensionality reduction, by 

projecting the input data to a linear subspace consisting of the directions which 

maximize the separation between classes

 We can interpret LDA as assigning 𝑥 to the class whose mean is the closest in terms of 

Mahalanobis distance, while also accounting for the class prior probabilities

 LDA is equivalent to first sphering (project) the data so that the covariance matrix is the identity, 

and then assigning 𝑥 to the closest mean in terms of Euclidean distance

 Note that the 𝐾 means 𝜇𝑘 are vectors in 𝑅𝑝, and they lie in an affine subspace 𝐻 of 

dimension at most 𝐾 − 1 (2 points lie on a line, 3 points lie on a plane, etc).

 Computing Euclidean distances in original 𝑝-dimensional space is equivalent to first projecting 

the 𝑥 into 𝐻, and computing the distances there

 In other words, if 𝑥 is closest to 𝜇𝑘 in the original space, it will also be the case in 𝐻. This shows 

that, implicit in the LDA classifier, there is a dimensionality reduction by linear projection onto a 

𝐾 − 1 dimensional space
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https://scikit-learn.org/stable/modules/lda_qda.html#lda-qda
https://arxiv.org/pdf/1906.02590.pdf


𝑊 = ෍

𝑘=1

𝐾

෍

𝑖∈𝐶𝑘

(𝑥𝑖 − 𝜇𝑘)(𝑥𝑖 − 𝜇𝑘)
𝑇

𝐵 = ෍

𝑘=1

𝐾

𝑛𝑘 (𝜇𝑘 − 𝜇) (𝜇𝑘 − 𝜇)𝑇

 Fisher criteria is to maximize the 

generalized Rayleigh quotient

max
𝑎

𝑎𝑇𝐵𝑎

𝑎𝑇𝑊𝑎
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Within class covariance matrix

Between class covariance matrix

Alternative view of LDA (link with Fisher LDA)

https://scikit-learn.org/stable/modules/lda_qda.html#lda-qda


 This is a generalize eigenvalue problem and 𝑎1 is the eigenvector that 

correspond to the largest eigenvalue of 𝑊−1𝐵

 One can find the next direction 𝑎2 orthogonal to 𝑎1 such that 
𝑎2

𝑇𝐵𝑎2

𝑎2
𝑇𝑊𝑎2

is maximize and it 

correspond to the second largest eigenvalue

 𝑎𝑙 is known as discriminant coordinate, we can project the original data down to 𝐿 dimension

 Then we can classify the projected data ( ෤𝑥, ෤𝜇𝑘) using nearest to centroid rule 

𝑎𝑟𝑔𝑚𝑖𝑛𝑗=1…𝑘
1

2
| ෤𝑥 − ෤𝜇𝑘|

2 − log ෤𝜋𝑘

 This is equivalent to Maximum likelihood solution with Gaussian model subject to rank 𝐿
(reduced rank LDA, ESL ch 4.3 and ESL exercise 4.8)
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Alternative view of LDA (link with Fisher LDA)

https://math.stackexchange.com/questions/1769712/how-to-maximize-generalized-rayleigh-ratio
https://scikit-learn.org/stable/modules/lda_qda.html#lda-qda


Fisher’s Iris Data

 4 variables

 3 species

 50 samples/class

 Setosa

 Versicolor

 Virginica

 LDA classifies all but 3 

of the 150 training 

samples correctly
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https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html


Fisher’s Discriminant Plot

 When there are 𝐾 classes, linear discriminant analysis can be viewed exactly 

in a 𝐾 − 1 dimensional plot

 Because it essentially classifies to the closest centroid, and they span a 

𝐾 − 1 dimensional plane

 Even when 𝐾 > 3, we can find the “best” 2-dimensional plane for visualizing the 

discriminant rule
28

only two orange and one green are misclassified



Back to the LDA on Credit Data

 (23 + 252)/10,000 errors — a 2.75% misclassification rate!

 Some caveats:

1. This is training error, and we may be overfitting. Not a big concern here since 𝑛 =
10,000 and 𝑝 = 2!

2. If we classified to the prior — always to class No in this case — we would make 333/10000 

errors, or only 3.33%

3. By the confusion matrix. Of the true No’s, we make 23/9667 = 0.2% errors; of the true 

Yes’s, we make 252/333 = 75.7% errors
29

Use balance and 

student variables 

to build LDA



Types of errors

 False positive rate: The fraction of negative examples that are classified as positive —

0.2% in previous example 

 False negative rate: The fraction of positive examples that are classified as negative —

75.7% in previous example

 We produced previous table (confusion matrix) by classifying to class Yes if
෢𝑃𝑟(𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑌𝑒𝑠|𝐵𝑎𝑙𝑎𝑛𝑐𝑒, 𝑆𝑡𝑢𝑑𝑒𝑛𝑡) ≥ 0.5

 We can change error rates by changing the threshold from 0.5 to some other value in [0, 1]:
෢𝑃𝑟(𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑌𝑒𝑠|𝐵𝑎𝑙𝑎𝑛𝑐𝑒, 𝑆𝑡𝑢𝑑𝑒𝑛𝑡) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
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Threshold 0.2 

here

FNR is 41.4%, 

although overall 

error rate increases 

to 3.73% 



Varying the threshold

 In order to further reduce the false negative rate, we may want to reduce the 

threshold to 0.1 or less
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https://becominghuman.ai/whats-recall-and-precision-4a801b1ac0da

False positive rate =
𝐹𝑃

𝑇𝑁+𝐹𝑃

False negative rate =
𝐹𝑁

𝑇𝑃+𝐹𝑁
Negative Positive

Predict Negative TN (True Negative) FN (False Negative)

Predict Positive FP (False Positive) TP (True Positive)

Confusion matrix

https://becominghuman.ai/whats-recall-and-precision-4a801b1ac0da


ROC (Receiver Operating Characteristics) Curve

 The ROC plot displays both True and False positive rates 

simultaneously

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
(Precision)

 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(Recall) = Sensitivity = True positive rate = Power 

 Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃

 False positive rate =
𝐹𝑃

𝑇𝑁+𝐹𝑃
= 1- Specificity (Type I error)

 False negative rate =
𝐹𝑁

𝑇𝑃+𝐹𝑁
= 1- Sensitivity (Type II error)

 Sometimes we use the AUC or area under the curve to 

summarize the overall performance. Higher AUC is good

 Random classifier is the diagonal
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Other forms of Discriminant Analysis

Pr 𝑌 = 𝑘 𝑋 = 𝑥 =
𝜋𝑘𝑓𝑘(𝑥)

σ𝑙=1
𝑘 𝜋𝑙𝑓𝑙(𝑥)

 When 𝑓𝑘(𝑥) are Gaussian densities, with the same covariance matrix Σ in each 

class, this leads to linear discriminant analysis

 By altering the forms for 𝑓𝑘(𝑥), we get different classifiers. With Gaussians but different Σ𝑘
in each class, we get quadratic discriminant analysis (QDA)

 It assumes that an observation from the 𝑘th class is of the form 𝑋~𝑁 𝜇𝑘 , Σ𝑘

 With 𝑓𝑘 𝑥 = ς𝑗=1
𝑝

𝑓𝑗𝑘(𝑥) (conditional independence model) in each class we get naive 

Bayes. If Gaussian is also impose this will mean the Σ𝑘 are diagonal

 Many other forms, by proposing specific density models for 𝑓𝑘 𝑥 , including nonparametric 

approaches
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Quadratic Discriminant Analysis

 The Bayes classifier assigns an observation 𝑋 = 𝑥 to which the following 

formula is largest

𝛿𝑘 𝑥 = −
1

2
𝑥𝑇Σ𝑘

−1𝑥 + 𝑥𝑇Σ𝑘
−1𝜇𝑘 −

1

2
𝜇𝑘
𝑇Σ−1𝜇𝑘 −

1

2
log Σ𝑘 + log(𝜋𝑘)

the quantity 𝑥 now appears as a quadratic function
34

The Bayes (purple dashed), LDA (black dotted), and QDA

(green solid) decision boundaries for a two-class problem
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 In general estimation of 𝑝-dimensional density 𝑓𝑘(𝑥) is challenging

 Assumes features are independent in each class
𝑓𝑘 𝑥 = 𝑓𝑘1 𝑥1 × 𝑓𝑘2 𝑥2 ×⋯× 𝑓𝑘𝑝(𝑥𝑝)

 It often leads to decent results, especially in settings where 𝑛 is not large enough relative to 

𝑝 for us to effectively estimate the joint distribution of the predictors within each class 

 If 𝑋𝑗 is quantitative, then we can assume that 𝑋𝑗|𝑌 = 𝑘 ~𝑁(𝜇𝑘𝑗 , 𝜎𝑘𝑗
2 ) which amounts to QDA 

with assumption that class-specific covariance matrix is diagonal. We can also replace 𝑓𝑘𝑗 𝑥𝑗
with non-parametric estimate with probability mass function (histogram)

 If 𝑋𝑗 is qualitative, then we can simply count the proportion of training observations for the 𝑗th

predictor corresponding to each class

 The posterior probability is:

Pr 𝑌 = 𝑘 𝑋 = 𝑥 =
𝜋𝑘 × 𝑓𝑘1 𝑥1 × 𝑓𝑘2 𝑥2 ×⋯× 𝑓𝑘𝑝(𝑥𝑝)

σ𝑙=1
𝐾 𝜋𝑙 × 𝑓𝑙1 𝑥1 × 𝑓𝑙2 𝑥2 ×⋯× 𝑓𝑙𝑝(𝑥𝑝)
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Naive Bayes

 We now consider the naive Bayes classifier in 

a toy example with 𝑝 = 3 predictors and 𝐾 =
2 classes. The first two predictors are 

quantitative, and the third predictor is 

qualitative with three levels. Suppose further 

that ො𝜋1 = ො𝜋2 = 0.5
 New observation 𝑥∗ = (0.4,1.5,1)𝑇 ,

መ𝑓11 0.4 = 0.368, መ𝑓12 1.5 = 0.484, መ𝑓13 1 = 0.226,

መ𝑓21 0.4 = 0.030, መ𝑓22 1.5 = 0.130, መ𝑓23 1 = 0.616

 We have

𝑃𝑟 𝑌 = 1 𝑋 = 𝑥∗ = 0.944
𝑃𝑟 𝑌 = 2 𝑋 = 𝑥∗ = 0.056
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Naive Bayes

 Credit card data with threshold set to 0.5

 We have assumed that each quantitative predictor is drawn from a Gaussian distribution

 Does not outperform LDA since 𝑛 = 10,000 and 𝑝 = 2 in this case
37
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3. An Analytical Comparison of different methods

 We would like to assign an observation that maximizes the following formula

log
Pr 𝑌 = 𝑘 𝑋 = 𝑥
Pr 𝑌 = 𝐾 𝑋 = 𝑥

for 𝑘 = 1,… , 𝐾

 For LDA we have

log
Pr 𝑌 = 𝑘 𝑋 = 𝑥

Pr 𝑌 = 𝐾 𝑋 = 𝑥
= log(

𝜋𝑘
𝜋𝐾

) −
1

2
𝜇𝑘 + 𝜇𝐾

𝑇Σ−1 𝜇𝑘 − 𝜇𝐾 + 𝑥𝑇Σ−1 𝜇𝑘 − 𝜇𝐾

= 𝑎𝑘 + σ𝑗=1
𝑝

𝑏𝑘𝑗𝑥𝑗

 So LDA, like logistic regression, assumes that log odds of the posterior probabilities is linear in 𝑥

 For QDA we have

log
Pr 𝑌 = 𝑘 𝑋 = 𝑥

Pr 𝑌 = 𝐾 𝑋 = 𝑥
= 𝑎𝑘 +෍

𝑗=1

𝑝

𝑏𝑘𝑗𝑥𝑗 +෍

𝑗=1

𝑝

෍
𝑙=1

𝑝

𝑐𝑘𝑗𝑙 𝑥𝑗𝑥𝑙

 QDA assumes that the log odds of the posterior probabilities is quadratic in 𝑥
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 For naïve Bayes

log
Pr 𝑌 = 𝑘 𝑋 = 𝑥

Pr 𝑌 = 𝐾 𝑋 = 𝑥
= log

𝜋𝑘
𝜋𝐾

+෍

𝑗=1

𝑝

log(
𝑓𝑘𝑗(𝑥𝑗)

𝑓𝐾𝑗(𝑥𝑗)
) = 𝑎𝑘 +෍

𝑗=1

𝑝

𝑔𝑘𝑗(𝑥𝑗)

1. LDA is a special case of QDA with 𝑐𝑘𝑗𝑙 = 0 for all 𝑗 = 1, . . . , 𝑝, 𝑙 = 1, . . . , 𝑝, and 𝑘 =

1, . . . , 𝐾

2. Any classifier with a linear decision boundary can be link to naïve Bayes with 

𝑔𝑘𝑗 𝑥𝑗 = 𝑏𝑘𝑗𝑥𝑗 and can be considered as a special case of naïve Bayes 

 If we model 𝑓𝑘𝑗(𝑥𝑗) in the naive Bayes classifier using a one-dimensional Gaussian 

distribution 𝑁(𝜇𝑘𝑗 , 𝜎𝑗
2), then we end up with 𝑔𝑘𝑗 𝑥𝑗 = 𝑏𝑘𝑗𝑥𝑗, where 𝑏𝑘𝑗 = Τ(𝜇𝑘𝑗 − 𝜇𝐾𝑗) 𝜎𝑗

2

In this case, naive Bayes is actually a special case of LDA with Σ restricted to be a diagonal 

matrix with 𝑗th diagonal element equal to 𝜎𝑗
2

3. QDA and naive Bayes can produce flexible fit
39
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 LDA would do better than Logistic Regression if the assumption of normality 

hold, otherwise logistic regression can outperform LDA

 KNN is completely non-parametric: No assumptions are made about the shape 

of the decision boundary!

 In order to provide accurate classification, KNN requires a lot of observations relative to 

the number of predictors. This has to do with the fact that KNN is non-parametric, and thus 

tends to reduce the bias while incurring a lot of variance

 QDA is a compromise between non-parametric KNN method and the linear 

LDA and logistic regression. If the true decision boundary is:

 Linear: LDA and Logistic outperforms

 Moderately Non-linear: QDA outperforms

 More complicated: KNN is superior
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An Empirical Comparison

 We generated data from six different scenarios. each of which involves a binary 

(two-class) classification problem. There are two quantitative predictors

1. In three of the scenarios, the Bayes decision boundary is linear, and in the remaining 

scenarios it is non-linear

2. For each scenario, we produced 100 random training data sets. On each of these training 

sets, we fit each method to the data and computed the resulting test error rate on a large 

test set

3. The KNN method requires selection of 𝐾, the number of neighbors. We performed KNN 

with two values of 𝐾: 𝐾 = 1, and a value of 𝐾 that was chosen automatically using an 

approach called cross-validation, which we discuss further in Chapter 5

4. We applied naive Bayes assuming univariate Gaussian densities for the features within 

each class
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1. There were 20 training observations in each of the two classes. 

The observations within each class were uncorrelated random 

normal variables with a different mean in each class

 The left-hand panel shows that LDA performed well in this setting, as 

one would expect since this is the model assumed by LDA. Logistic 

regression assumes a linear decision boundary, its results were only 

slightly inferior to those of LDA

 KNN performed poorly because it paid a price in terms of variance that 

was not offset by a reduction in bias. QDA also performed worse than 

LDA, since it fits a more flexible classier than necessary

 Naive Bayes was slightly better than QDA because the naive Bayes 

assumption of independent predictors is correct
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2. Details are as in Scenario 1, except that within each class, the two 

predictors had a correlation of − 0.5

 The notable exception is naive Bayes, which performs very poorly here, 

since the naive Bayes assumption of independent predictors is violated

3. As in 2 but we here generated 𝑋1 and 𝑋2 from the multivariate 𝑡-
distribution, with 50 observations per class

 The decision boundary was still linear, and so fit into the logistic regression 

 The set-up violated the assumptions of LDA. It shows that logistic 

regression outperformed LDA, though both methods were superior to the 

other approaches

 In particular, the QDA results deteriorated considerably as a consequence of 

non-normality

 Naive Bayes performed very poorly because the independence assumption 

is violated
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4. The data were generated from a normal distribution, with a 

correlation of 0.5 between the predictors in first class, and 

correlation of −0.5 between the predictors in the second class

 This setup corresponded to the QDA assumption and resulted in 

quadratic decision boundaries 

 The naive Bayes assumption of independent predictors is violated 

therefore performs poorly

5. Within each class, the observations were generated from a normal 

distribution with uncorrelated predictors. However, the responses 

were sampled from the logistic function applied to a non-linear 

function of the predictors

 QDA and naive Bayes gave slightly better results than the linear methods 

while the much more flexible KNN-CV method gave the best results

 But KNN with 𝐾 = 1 gave the worst results out of all methods
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6. The observations were generated from a normal distribution 

with a different diagonal covariance matrix for each class. 

However, the sample size was very small: just 𝑛 = 6 in each 

class

 Naive Bayes performed very well, because its assumptions are 

met. LDA and logistic regression performed poorly because the 

true decision boundary is non-linear, due to the unequal 

covariance matrices

 QDA performed a bit worse than naïve Bayes, because given the 

very small sample size, the former incurred too much variance in 

estimating the correlation between the predictors within each 

class. KNN’s performance also suffered due to the very small 

sample size
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Bikeshare dataset

 We consider the Bikeshare data set. The response is bikers, the number of 

hourly users of a bike sharing program in Washington, DC

 This response value is hard to be classified into qualitative or quantitative variable: it takes 

on non-negative integer values, or counts

 We will consider counts predicting bikers using the covariates mnth (month of the year), hr

(hour of the day, from 0 to 23), workingday (an indicator variable that equals 1 if it is 

neither a weekend nor a holiday), temp (the normalized temperature, in Celsius), and 

weathersit (a qualitative variable that takes on one of four possible values: clear; misty or 

cloudy; light rain or light snow; or heavy rain or heavy snow)
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Linear Regression on the Bikeshare Data
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Bikeshare dataset

 Upon more careful inspection, some issues become apparent. 

1. For example, 9.6% of the fitted values in the Bikeshare data set are negative: that is, the 

linear regression model predicts a negative number of users during 9.6% of the hours in 

the data set 

2. The variance is not constant as well

48

3. The response 𝑌 is necessarily 

continuous valued 

(quantitative). Thus, the integer 

nature of the response bikers 

suggests that a linear regression 

model is not entirely 

satisfactory for this data set



4. Poisson Regression

 Suppose that a random variable 𝑌 takes on nonnegative integer values, i.e. 𝑌 ∈
{0, 1, 2, . . . }. If 𝑌 follows the Poisson distribution, then

Pr 𝑌 = 𝑘 =
𝑒−λλ𝑘

𝑘!
for 𝑘 = 0,1,2, …

 Here, λ > 0 and λ = 𝐸 𝑌 = 𝑉𝑎𝑟(𝑌), The Poisson distribution is typically used to model 

counts; this is a natural choice for a number of reasons

 We consider the following model for the mean λ = 𝐸 𝑌|𝑋
𝑌|𝑋 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)

log(λ(𝑋1, … , 𝑋𝑝)) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝

 Given 𝑛 independent observations from the Poisson regression model, the 

likelihood takes the form

𝑙 𝛽0, 𝛽1, … , 𝛽𝑝 =ෑ

𝑖=1

𝑛
𝑒−λ(𝑥𝑖)λ(𝑥𝑖)

𝑦𝑖

𝑦𝑖!
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Poisson Regression on the Bikeshare Data
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Generalized Linear Models (GLM) in Greater Generality

 We have now discussed three types of regression models: linear, logistic and 

Poisson. These approaches share some common characteristics:

1. Each approach uses predictors 𝑋1, . . . , 𝑋𝑃 to predict a response 𝑌. We assume that, 

conditional on 𝑋1, . . . , 𝑋𝑃, 𝑌 belongs to a certain family of distributions. For linear 

regression, we typically assume that 𝑌|𝑋 follows a Gaussian or normal distribution. For 

logistic regression, we assume that 𝑌|𝑋 follows a Bernoulli distribution. Finally, for 

Poisson regression, we assume that 𝑌|𝑋 follows a Poisson distribution

2. Each approach models the mean of 𝑌 as a function of the predictors. 

𝐸 𝑌 𝑋1, … , 𝑋𝑝 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝

𝐸 𝑌 𝑋1, … , 𝑋𝑝 =
𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝

1 + 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝

𝐸 𝑌 𝑋1, … , 𝑋𝑝 = 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝
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Generalized Linear Models in Greater Generality

 They can be expressed using a link function, 𝜂, which link function applies a 

transformation to 𝐸 𝑌 𝑋1, … , 𝑋𝑝 so that the transformed mean is a linear 

function of the predictors. That is

𝜂 𝐸 𝑌 𝑋1, … , 𝑋𝑝 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝

 The link functions for linear, logistic and Poisson regression are 𝜂(𝜇) = 𝜇, 𝜂(𝜇) =
log(𝜇/(1 − 𝜇)), and 𝜂(𝜇) = log(𝜇), respectively

 The Gaussian, Bernoulli and Poisson distributions are all members of a wider 

class of distributions, known as the exponential family 

 In general, we can perform a regression by modeling the response 𝑌 as coming from a 

particular member of the exponential family, and then transforming the mean of the 

response so that the transformed mean is a linear function of the predictors via the link 

function
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 GLM model the mean

 Variance is related to mean and error not i.i.d.

 https://stats.stackexchange.com/questions/401045/why-no-variance-term-in-bayesian-logistic-

regression

 https://stats.stackexchange.com/questions/259704/is-there-i-i-d-assumption-on-logistic-regression

 Think of it as modeling the conditional distribution

 https://stats.stackexchange.com/questions/55538/does-poisson-regression-have-an-error-term

 https://stats.stackexchange.com/questions/124818/logistic-regression-error-term-and-its-

distribution

 https://stats.stackexchange.com/questions/353231/conditional-distribution-in-logistic-regression
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Coefficient and Standard error

 Coefficient and Standard error

 Logistic regression

 https://web.stanford.edu/class/archive/stats/stats200/stats200.1172/Lecture26.pdf

 https://stats.stackexchange.com/questions/303180/standard-error-of-the-estimate-in-logistic-

regression

 https://stats.stackexchange.com/questions/68080/basic-question-about-fisher-information-matrix-

and-relationship-to-hessian-and-s

 LDA and QDA

 https://arxiv.org/pdf/1906.02590.pdf

 GLM

 https://www.sagepub.com/sites/default/files/upm-binaries/21121_Chapter_15.pdf

 OVO or OVR

 https://en.wikipedia.org/wiki/Multiclass_classification
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Review of Covariance Matrix

 Let 𝑥1, … , 𝑥𝑛 be length-𝑝 observation vectors

𝑥𝑖 =

𝑥𝑖1
𝑥𝑖2
⋮
𝑥𝑖𝑝

 Without Loss Of Generality (WLOG), let their mean be length-𝑝 0-vector

 Let the data matrix 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) be a 𝑝 by 𝑛 matrix

 The sample covariance matrix

𝑆 = Τ𝑋𝑋𝑇 (𝑛 − 1) =෍

𝑖=1

𝑛

𝑥𝑖𝑥𝑖
𝑇/(𝑛 − 1) =෍

𝑖=1

𝑛

(𝑥𝑖 − ҧ𝑥)(𝑥𝑖 − ҧ𝑥)𝑇 /(𝑛 − 1)
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Review of  eigenvalue decomposition- Maximum variance 

formulation 

 Find a direction vector 𝑢1 ∈ 𝑅𝑝 and 𝑢1
𝑇𝑢1 = 1 such that the variance of the 

projected data is maximized
1

𝑛
σ𝑖=1
𝑛 (𝑢1

𝑇𝑥𝑖 − 𝑢1
𝑇 ҧ𝑥)2 = 𝑢1

𝑇𝑆𝑢1

 To enforce the constraint, we introduce a  Lagrange multiplier denoted by λ1 and get the 

unconstrained maximization of 

𝑢1
𝑇𝑆𝑢1 + λ1(1 − 𝑢1

𝑇𝑢1) or maximize 
𝑢𝑇𝑆𝑢

𝑢𝑇𝑢

 By setting the derivative with respect to 𝑢1 equal to zero, we see that this quantity will 

have a stationary point when 

𝑆𝑢1 = λ1𝑢1
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Review of  eigenvalue decomposition- Maximum variance 

formulation 

 𝑢1 must be an eigenvector of 𝑆, if we left-multiply by 𝑢1
𝑇 we get

𝑢1
𝑇𝑆𝑢1 = λ1

 and so the variance will be a maximum when we set 𝑢1 equal to the eigenvector having the 

largest eigenvalue λ1. This eigenvector is known as the first principal component.

 We can define additional principal components in an incremental fashion by 

choosing each new direction to be that which maximizes the projected variance 

amongst all possible directions orthogonal to those already considered.

 In a 𝑟-dimensional projection space, we now consider the optimal linear projection for which 

the variance of the projected data is maximized is defined by the 𝑟 eigenvectors 𝑢1, … , 𝑢𝑟 of 

the data covariance matrix S corresponding to the 𝑟 largest eigenvalues λ1, … , λ𝑟. 

58



Principal Component Analysis (PCA)  (1/2)

 If we collect eigenvectors and eigenvalues into matrix
𝑆𝑝×𝑝𝑈𝑝×𝑝 = 𝑈𝑝×𝑝Λ𝑝×𝑝
𝑆𝑝×𝑝 = 𝑈𝑝×𝑝Λ𝑝×𝑝𝑈𝑝×𝑝

𝑇

 Note 𝑋 = 𝑈𝑆𝑉𝑇

 Scores are 𝑈𝑇𝑋 = 𝑆𝑉𝑇

 It is equivalent to Minimum error formulation

𝑎𝑟𝑔𝑚𝑖𝑛𝑈𝜖 𝑂𝑝,𝑟 ෍

𝑖=1

𝑛

|(𝑋𝑖 − ത𝑋) − 𝑈𝑈𝑇(𝑋𝑖 − ത𝑋))|𝐹
2
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Convention 1 Convention 2

𝑈 Principal component

Principal direction

Loading

Principal axis

Principal direction

𝑈𝑇𝑋 Principal component scores Principal component



Principal Component Analysis (PCA)  (2/2)

 Connection with SVD

S =
𝑋𝑋𝑇

𝑛 − 1
=
𝑈𝐷𝑉𝑇𝑉𝐷𝑈𝑇

𝑛 − 1
= 𝑈

𝐷2

𝑛 − 1
𝑈𝑇 = 𝑈Λ𝑈𝑇

 In practice, we will often scale data before PCA 

 Whiten data matrix (identity covariance matrix)

 Λ−1/2𝑈𝑇X

 ZCA (Close to original data (often not reduce dimension))

 𝑈Λ−1/2𝑈𝑇X
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